
Boosting Universal LLM Reward Design through Heuristic Reward
Observation Space Evolution

Zen Kit Heng†, Zimeng Zhao†, Tianhao Wu‡, Yuanfei Wang‡, Mingdong Wu, Yangang Wang, Hao Dong

Abstract— Large Language Models (LLMs) are emerging
as promising tools for automated reinforcement learning (RL)
reward design, owing to their robust capabilities in commonsense
reasoning and code generation. By engaging in dialogues with RL
agents, LLMs construct a Reward Observation Space (ROS) by
selecting relevant environment states and defining their internal
operations. However, existing frameworks have not effectively
leveraged historical exploration data or manual task descriptions
to iteratively evolve this space. In this paper, we propose a
novel heuristic framework that enhances LLM-driven reward
design by evolving the ROS through a table-based exploration
caching mechanism and a text-code reconciliation strategy. Our
framework introduces a state execution table, which tracks
the historical usage and success rates of environment states,
overcoming the Markovian constraint typically found in LLM di-
alogues and facilitating more effective exploration. Furthermore,
we reconcile user-provided task descriptions with expert-defined
success criteria using structured prompts, ensuring alignment
in reward design objectives. Comprehensive evaluations on
benchmark RL tasks demonstrate the effectiveness and stability
of the proposed framework. Code and video demos are available
at jingjjjjjie.github.io/LLM2Rewards

I. INTRODUCTION

Simultation is of paramount importance in scaling up
robotic learning, as it provides more controllable environments
for acquiring diverse robotic skills [24] and offers additional
guidance for effective sim-to-real transfer [15]. Traditional
methods rely on manual reward shaping, which is labor-
intensive and may not generalize well across different tasks
and environments [18]. Moreover, poorly designed rewards
can hinder the learning process or lead to unintended
behaviors, complicating the development of robust robotic
systems [13].

Recent advancements in Large Language Models
(LLMs) [2] have opened new avenues for automated reward
design. LLMs are believed to encapsulate vast amounts
of human knowledge and logic from their training corpus.
Consequently, the embodied AI community regards LLMs
as generalizable encyclopedias, guiding agents to learn skills
universally across diverse environment-robot settings under

Zen Kit Heng, Tianhao Wu, Yuanfei Wang, Mingdong Wu and Hao
Dong are with the Center on Frontiers of Computing Studies, School of
Computer Science, Peking University, Beijing 100871, China, also with
PKU-Agibot Lab, School of Computer Science, Peking University, Beijing
100871, China, and also with National Key Laboratory for Multimedia
Information Processing, School of Computer Science, Peking University,
Beijing 100871, China. Zimeng Zhao and Yangang Wang are with School
of Automation, Southeast University, Nanjing, China.

† The first two authors contributed equally.
‡ The second two authors contributed equally.
Corresponding to hao.dong@pku.edu.cn

Fig. 1. Comparison diagram of evolutionary process.(a) Eureka’s
evaluation and sampling. (b) Our evaluation and sampling.

an imitation learning [10], [6] or reinforcement learning [32],
[14], [27], [29] formulation.

Focusing on the latter, this work aims to build a universal
RL reward design scheme with LLMs. The primary challenge
lies in grounding [3]: making RL agents’ perceptions under-
standable for LLMs’ planning and ensuring that LLMs’ code
is actionable for RL agents’ control. Formally, LLMs design
an RL task reward through constructing a corresponding
Reward Observation Space (ROS). This space contains a
subset of all available environment-robot states, along with
the operations defined upon those subset members. Our key
idea is to regard the LLM reward design problem as a heuristic
sampling to evolve the ROS driven by both curiosity and
success feedback.

Limited by LLM context length, pioneer works [14], [33]
only adopted the local optima ROS of the last iteration as a
sampling guidance in the current iteration. In pursuit of more
thorough and efficient communications, we first incorporate a
state execution table accessible to all iterations and samples,
breaking the Markovian constraint in LLM dialogues. This
table keeps track of historical usage frequency and success
contributions of each state in the RL task, ensuring that novel
ROS configurations are explored by encouraging LLMs to
prioritize states with higher success contributions and fewer
usages. To further optimize this process, we employ the
following strategies: (i) We disentangle the design of space
member selection and internal member operation into two
sub-problems, alternating between them across iterations,
reducing complexity and improving comparability within
ROS during each iteration. (ii) To prevent LLMs from
being misled by local optima, the full reward code is only
provided if the success rate exceeds an adaptive threshold.

jingjjjjjie.github.io/LLM2Rewards


Otherwise, the reward code is truncated [1]. (iii) Execution
errors are mitigated by only updating the state execution table
with successful runs, keeping LLMs focused on valid state
configurations.

We further get insights on conveying structured and non-
controversial information [29], [32], [30] to LLMs. Current
formulation [14], [33] takes the design mission from a
user’s description text, while iteratively evaluating each
design sample according to another expert’s success code.
As a potential risk, the intentions of these two individuals
may be misaligned or even contradictory. To this end, we
resort to LLM to reconcile their potential contradictions
by prompting with their structured templates. Surprisingly,
even for a new task without a definition of success, our
framework could facilitate LLM in writing an expert-level
success function according to the above templates and
user task description. Afterward, the reconciled description
becomes the LLM’s mission, and the reconciled success
replaces the vanilla success. For a fair comparison with the
existing approaches [14], [32], [33], our LLM preprocessing
is isolated from the subsequent design iterations and the
reconciled success is still invisible during LLM design. In
our comparison, their performance on reconciled settings has
also been evaluated.

In summary, our main contributions are:
• A heuristic ROS evolution framework, boosting the perfor-
mance of LLM reward design.
• A table-based exploration caching mechanism, breaking
the Markovian constraint in LLM dialogues.
• A user-expert reconciliation strategy, filling the cognitive
gap between users and experts to the same task.

II. RELATED WORK

Reward Design Problem. Rewards are the primary mech-
anism through which agents learn desirable behaviors in
a given environment [8], and their formulation critically
affects the efficiency and success of the learning process [12].
Historically, reward functions have been hand-crafted by
domain experts for specific tasks like robot navigation or
games [17], [23]. However, crafting effective reward functions
is challenging, as it requires balancing exploration with
enough guidance to avoid suboptimal behavior [25]. For
more complex tasks, such as robotic manipulation involving
continuous control, reward design becomes significantly
more challenging [4], [7]. To address the above challenges,
researchers have explored automatic reward generation tech-
niques. Inverse reinforcement learning (IRL) [5], [19] aims to
infer reward functions from expert behavior rather than relying
on manual design. IRL has demonstrated success across
various domains, yet it often demands high-quality expert
demonstrations, which can be costly and time-consuming to
obtain. Moreover, the inferred reward functions are not always
unique or interpretable, leading to ambiguity when applied to
new contexts [34]. Evolutionary algorithms represent another
approach to reward design. Early works, such as [20], utilized
these algorithms to iteratively optimize reward functions by
selecting the most promising candidates. Although promising,

these methods are computationally intensive and require
predefined templates for possible reward structures, which
constrains their flexibility. The recent advent of large language
models (LLMs) [21], [28] has expanded the potential for auto-
matic reward generation. For example, Eureka framework [14]
generates reward functions from raw environment descriptions
and task code. However, the quality of rewards produced
by Eureka can be inconsistent, and the generation process
may suffer from instability particularly when applied to
tasks requiring fine-tuned control. By incorporating advanced
evolutionary algorithms, our approach ensures stable reward
generation, especially in environments with a high degree of
freedom action space [7].
Scaling up Robotic Learning in Simulations. Simulations
provide a controlled environment where robots can acquire
diverse skills with minimal risk and cost, making it a
fundamental tool for research in embodied AI [26]. However,
despite the advances in simulation platforms, scaling up
robotic learning presents several hurdles, primarily in the
generation of diverse tasks. Automating task generation is
therefore a vital step toward scaling up learning processes in
simulation. A key issue in scaling up robotic learning is the
creation of diverse and meaningful tasks within simulation
environments. Traditionally, task generation has relied heavily
on manual design, where experts must define each task, its
associated assets, and the reward functions that guide the
robot’s learning process. This approach is not only labor-
intensive but also limits the scope and diversity of tasks
that can be generated. One promising direction to scale up
robotic learning is through multi-task and meta-reinforcement
learning [11], [31], [7]. In multi-task RL, robots learn multiple
tasks simultaneously, sharing knowledge across tasks to
improve generalization. Frameworks like Meta-World [31]
provides a collection of manipulation tasks that encourage
robots to develop transferable skills. Meta-reinforcement
learning goes further by training robots to learn how to
learn, enabling them to quickly adapt to new tasks based
on previous experience. Some attempts [9] aims to optimize
a robot’s policy in such a way that it can rapidly adapt to
new, unseen tasks with minimal additional training. These
approaches are essential for developing generalist robots that
can operate in diverse, dynamic environments. This work
aims to create diverse, user-described tasks within existing
simulation environments, promoting multi-task learning and
expanding the applicability of current simulations.

III. PROBLEM FORMULATION

We address the reward design problem (RDP) for general
RL environments [24], which can be formalized as a tuple
RDP ≜ ⟨M,R,Λ,Fft⟩. Given a world model M , the optimal
reward function R⋆ is expected to efficiently guide an RL
algorithm Λ to accomplish the task:

R⋆ = argmax
R

Fft[Λ(R)] (1)

World model M defines an environment-robot setting includ-
ing state S ∈ S , action A ∈ A and transition S ×A 7→ S . A
task ΓM defined in M is to achieve a clear goal. From user’s



Fig. 2. The pipeline of our proposed framework for heuristic Reward Observation Space (ROS) evolution in LLM-aided RL reward design. (a) User-expert
Mission Reconciling. (b) Observation Space Disentanglement. (c) Reward State Execution. (d) Reward Item Performance.

perspective, this goal is expressed through the task description
U (e.g.“make humanoids stand up”). From expert’s perspective,
it is grounded as the success function Fsc : S 7→ {0, 1}
(e.g.“take 1 when the humanoid torso is above a certain
height otherwise 0”).
Reward function R : S × A 7→ R compactly quantifies
the contribution of every ⟨S,A⟩ pattern to ΓM with a scalar.
When R is represented by a logic code, its input is a subset
of S, and its output scalar is obtained by operations within
the subset states.
RL algorithm Λ explores the optimal policy π = π⋆

Λ guided
by a form of R to complete ΓM . An interaction episode
between πΛ and the M ’s transition result in a Markov
Decision Process. The huge exploring space causes Λ to
have no guarantee that π⋆

Λ will be found on every run, even
if the same R is adopted.
Fitness function Fft : Λ(R) 7→ R crucially controls the
optimization in Eqn. 1 by measuring how well a form of
R can guide Λ to complete ΓM . A naïve setting is Fft =
Fsc. However, the optimization guided purely by Fsc lack
effectiveness since Fsc is usually sparse [14].

In essence, RDP Eqn. 1 requires an expert-crafted Fft to
guide the optimization of R effectively.

IV. METHODOLOGY

In this paper, we treat the dialogue between LLM and Λ(R)
as an iterative evolutionary process similar to Eqn. 1. This
allows users without domain expertise to design rewards using
natural language U while extending the guidance beyond Fft

alone. Specifically, the LLM is prompted to design K reward
samples Rn ≜ {R(k)

n }Kk=1 at the n-th iteration (n = 1, ..., N ):

Rn = LLMR

(
DR(R

⋆
n−1),DA[Λ(R

⋆
n−1)],

DG(

n−1∑
m

Rm) | DU (U)

)
R⋆

n = arg max
R∈Rn

Fsc[Λ(R)]

(2)

Initially, DU (·) interprets the task description U (IV-A). In
subsequent iterations (IV-B), composite guidance is applied.
DR(·) maps R into its Reward Observation Space (ROS).
DA(·) summarizes the performance of Λ. DG(·) acts as
memory, transcribing all historical reward samples into a
State Execution Table. The target R⋆ is approximated by
selecting the best-performing local optimum samples over N
iterations:

R⋆ ≈ arg max
R∈{R⋆

1 ,...,R
⋆
N}

Fsc[Λ(R)] (3)

A. User-expert Mission Reconciling

Two types of human involvement influence 2: users describe
tasks through U , while experts define success criteria via Fsc.
Conflicts between U and Fsc can confuse LLMR. To mitigate
this, we employ another LLM (LLMC) to reconcile these
potential discrepancies. Importantly, LLMC does not share
context with LLMR, ensuring that the code of Fsc is invisible
to LLMR [14].
User description regularization. Compared to Fsc, U can be
more uncertain and flexible. To standardize U , we introduce
a task-independent template TU :

DU (U) ≜ LLMC(U,Fsc,M | TU ) (4)

After this prompting, DU (U) is expanded to include: (i) the
composition of robots and objects in M . (ii)the goal states
for these objects. (iii) the initial conditions, and (iv) potential
post-goal states (see website for details on TU ).
Expert knowledge transfer. When no success definition
exists for a task in M , LLMC is further prompted to write
the code for Fsc:

[DU (U),Fsc] ≜ LLMC(U,M | TU ,DU (U
′),F ′

sc) (5)

where (U ′,F ′
sc) corresponds to another task defined on M .

This paradigm increases the reusability of M , and also makes
our framework less dependent on the existence of Fsc.



Fig. 3. Schematic illustration of the difference in sampling process for
different on reward spaceR. Compared to Eureka [14], observation Space
disentanglement improves the efficiency of the sampling process of LLM
by reducing the degrees of freedom.

B. Observation Space Evaluation

In subsequent iterations, LLMR is mainly guided by
the following 3 types of guidance: (i) DR(R

⋆
n−1) acts as

the reward example. (ii) DA[Λ(R
⋆
n−1)] reflects the detailed

training effects of this example. (iii) DG(
∑n−1

m Rm) keeps
the history explore memory of LLMR.
Reward Observation Space. We argue that the exploring
ability of LLMR iterations would be compromised when a
code example from the last iteration are fed directly into
the context of current iteration. Especially when R⋆

n−1 is
mediocre, it would cause LLMR to repeat this situation. To
tackle this problem, we introduce the concept of Reward
Observation Space (ROS). This space contains a subset of all
available environment-robot states ROSst(R), along with the
operations defined upon those subset members ROSop(R).
This make the information in a reward more compact and
structured than line-by-line code.
Observation Space disentanglement. As shown in Fig. 3,
we further disentangle the design of the ROS into two sub-
problems: space member selection ROSst(R) and internal
member operation ROSop(R). Consequently, the way DR(·)
acts on R⋆

n varies in different situations:

DR(R
⋆
n) =


ROSst(R

⋆
n), for odd n or

Fsc[Λ(R
⋆
n)] < τ

ROSop(R
⋆
n), otherwise

(6)

The space member selection is triggered when the iteration
index n is odd or the success score is less than a task-specific
threshold τ . In this situation, LLMR is encouraged to select
states from M that differ from ROSst(R

⋆
n) as the observation

members. On the other hand, the optimization to internal
member operation is triggered when the success achieving by
R⋆

n is considerable within even iterations. LLMR is prompted
to use the same observation members in ROSst(R

⋆
n) to devise

novel reward items. This disentanglement strategy not only
improves the efficiency of the reward design process but also

Fig. 4. Reward evolution in the first 3 iterations of our framework on
BlockGrasp task. (a) Each sample in iteration 2 keeps the same ROSst

as R⋆
1 . (b) Each sample in iteration 3 keeps the similar ROSop as R⋆

2 . In
each iteration, the abstract part the highest Fsc(·) (identified by the red
box) and two additional executable rewards are shown.

enhances the comparability of different ROS configurations
within a single iteration, leading to more consistent and
reliable reward outcomes.
State execution table. Considering the contradiction between
the Markovian nature and the token consumption constrains
of an LLM dialogue, most approaches [14], [3] keep LLM
memory by resending part of the history as additional input.
By contrast, we summarize the full history in a table form
SET with less and constant token consumption. The column
definition of SET is shown in Fig. : Column 1 enumerates
the names of all states in M . Column 2 indicates how many
times each state is adopted in all historical rewards. Column
3 indicates the contribution to the task success of each state.
This is calculated by dividing Fsc[Λ(R)] evenly to each
state contained in ROSst(R). The information on table is
accumulated along the evaluation:

DG(

n∑
{R(k)

n }Kk=1) ≜ SETn−1 ⊕
K∑
k

ROSst(R
(k)
n ) (7)

Since a failed run R implies that the corresponding ROSst(R)
has not efficiently explored, it is not accumulated on SET.

C. Implementation details

LLM settings. We use GPT-4, in particular the gpt-4-0314
variant, as the backbone API for both LLMR and LLMC .
Besides passing DU (U), the two LLMs do not share context
with each other. During prompting, the temperature is set as
1.0 to keep the diversity of reward samples. Each evolution is
set to N = 5 iterations, and LLM is required to generate K =
16 samples simultaneously in each LLMR design iteration.
ROSst is implemented by retaining only the first and last



logical line of the reward code. τ reflects the difficulty of
the given task. The success threshold τ for each task is
pre-set as the average success rate of K0 = 16 independent
and executable rewards designed by LLMR. All prompts and
task-independent templates are are attached to our website.
RL settings. All environment code M are deployed as
IsaacGym [16] environments, which can be simulated simul-
taneously with high efficiency. Proximal Policy Optimization
(PPO) algorithm [22], which uses default training parameters
in the environments [7], is used as a practice for RL
algorithms Λ. The rewards designed in the same iteration are
distributed and trained on 8 NVIDIA RTX 3090 GPUs. The
optimal reward candidate R⋆

N are evaluated in 5 independent
environments. The maximum interaction epochs per Λ is set
to 3000 in each LLMR design process, and 6000 in each
evaluating process.

V. EXPERIMENT

A. Baselines and Tasks

L2R [32] is a non-iterative framework that relies on reward
function templates. For environments and tasks specified
in natural language, the first LLM was asked to fill in a
natural language template describing the agent’s movements;
the second LLM was then asked to convert this “action
description” into code that invoked a set of manually-defined
reward API primitives to write a parameterized reward
program. To make the L2R competitive to our work, we
follow [14] to define motion description templates to mimic
the original L2R templates, Its API reward primitives were
constructed using individual components of the original
human rewards.
Eureka [14] utilizes the code-writing and zero-sample-
generation capabilities of Large Language Models (LLMs)
to generate executable reward function code directly from
the environment source code and linguistic task descriptions
in an iterative framework. This process does not require
task-specific hints, enabling Eureka to achieve zero-sample
reward function generation across a wide range of tasks.
Eureka employs an evolutionary search strategy by iteratively
sampling reward functions, evaluating their performance,
and incrementally improving the reward functions based
on feedback from these evaluations. For the fairness of the
comparison, our approach is consistent with Eureka in terms
of iteration amount N = 5 and sample amount K = 16.

The above baselines and our framework are evaluated on 20
hand-object interaction task from Bi-dexterous Manipulation
benchmark [7] with the same hyperparameter settings. These
task can be further categorized as: (i) Block Manipula-
tion (×3): BlockPush, BlockStack, Grasp&Place. (ii) Door
Manipulation (×4): DoorCloseOutward, DoorCloseInward,
DoorOpenOutward, DoorOpenInward. (iii) In-hand Manip-
ulation (×6): ReOrientation, HandOver, CatchUnderarm,
CatchOver2Underarm, CatchAbreast, TwoCatchUnderarm.
(iv) Functional Grasp (×8): Pen, Switch, GraspAndPlace,
Kettle, Scissors, SwingCup, BottleCap, LiftUnderarm. It is
noted that there are no templates or modules specifically
designed for the Bi-dexterous Manipulation in our framework.

The 9 tasks in IsaacGymEnvs [16] are ignored in our
experiments, mainly stemming from the fact that they contain
relatively few environment states and that Eureka can already
design better forms of rewards.

B. Evaluation Metrics

The following metrics are used to quantitatively evaluate
the quality of the different reward design approaches in each
task. It is worth noting that the quantities between different
tasks are relatively independent and not comparable.
Evaluated success rate (ESR) for each task indicates the
maximum success achieved in once RL training procedure
with a given reward. Consistent with Eureka [14], 5 identical
but independent RL training procedures are launched after
each reward design procedure. The average of the 5 rates
(ESRavg) is adopted to measure the effective of the given
reward and a higher ESRavg means a more effective reward.
Sampling state disparity (SSD) for each task refers to the
bias between the maximum and average usage frequency of
all states for historical reward codes (whether successfully
executed or not). It reflects the exploration degree of a reward
design approach on all states within the task.

C. Comparisons

Fig. 5 reports the performance comparison of our frame-
work with other existing approaches on 20 tasks. ESRavg

is used as the evaluation metric. According to the results
in the table, our method performs better than Eureka in 9
tasks and matches Eureka’s performance in 5 extreme sim-
ple/difficult tasks. Only in 6 tasks (BlockPush, CatchAbreast,
CatchOver2Underarm, DoorCloseOutward, ReOrientation,
LiftUnderarm), our method performs slightly lower than
Eureka.

We further found that it was the success rate thresholds
for these tasks that were set too high, causing LLMR to
focus too much on space member selection throughout the
evolution process. In our ablation study, two underperforming
tasks (CatchAbreast and DoorCloseOutward) as well as two
outperforming tasks are selected. However, in 2+DR(·)−
where the threshold is set to 0.1, we outperformed Eureka
on both underperforming tasks, achieving scores of [0.54, 1],
which are higher than Eureka’s scores of [0.5, 0.96]. This
suggests that adjusting thresholds might have a significant
impact on improving learning efficiency and task performance
across various robotic tasks. In our current approach, we use
the average of the success rates achieved by LLM in the first
iteration of the reward design as the average success rate for
each task. In the future, an adaptive threshold search algorithm
could enable this mechanism to achieve better performance.

D. Ablation Study

Starting with the Baseline+DU (·), we observe that the
naive introduction of the user-expert mission reconciling
mechanism can marginally improve LLM reward design.
This means that only formal and informative requirements
descriptions are not sufficient for LLM based reward evolution.
When the state execution table (SET) is introduced (1+SET),
we observe a more consistent improvement, especially in



TABLE I
ABLATION STUDIES ON 4 BI-DEXTEROUS MANIPULATION TASKS. FROM TOP TO BOTTOM, EACH ROW REPORTS A VARIANT FRAMEWORK THAT

MAKES ONLY ONE MODIFICATION W.R.T.OUR FINAL VERSION (THE LAST ROW) AS SPECIFIED BY ITS NAME.

BlockStack DoorCloseOutward CatchAbreast Pen

Index Variants ESRavg↑ SSD↑ ESRavg↑ SSD↑ ESRavg↑ SSD↑ ESRavg↑ SSD↑

1 Baseline+DU (·) 0.09 0.37 0.37 0.39 0.00 0.30 0.11 0.24
2 1+SET 0.12 0.39 0.59 0.74 0.00 0.53 0.05 0.74
3 2+DR(·)− 0.13 0.48 1.00 0.74 0.54 0.53 0.70 0.74
4 2+DR(·) 0.35 0.41 0.42 0.81 0.00 0.53 0.80 0.57

Fig. 5. Comparison with existing LLM reward design approaches. The subgraphs report the success rates on the 20 dexterity tasks on the Bi-dexterous
Manipulation benchmark [7].

the DoorCloseOutward task where ESRavg increases
from 0.37 to 0.59, and SSD improves significantly. This
suggests that incorporating structured state execution improves
the system’s ability to handle more complex scenarios by
providing a clearer execution plan. The addition of a fixed
success threshold τ = 0.1 in variant (iii), 2+DR(·)−, further
boosts performance, particularly in tasks like BlockStack
and CatchAbreast, where ESRavg and SSD either
match or exceed prior results. The fixed threshold likely
provides a clearer metric for success, leading to more stable
training and execution. Finally, variant (iv), 2+DR(·), which
introduces a task-specific success threshold via automatic
hyperparameter search, results in significant improvements
in tasks like BlockStack (with an ESRavg of 0.35) and
Pen (with an ESRavg of 0.80). However, the improvement
is not uniform across all tasks, as the CatchAbreast task
continues to show little progress, indicating that task-specific
thresholds may not universally enhance performance across
all environments.

VI. CONCLUSION

In this work, we introduced a novel framework that
enhances the design of reinforcement learning (RL) rewards
by harnessing the capabilities of large language models
(LLMs). Our approach addresses the critical challenge of
grounding, facilitating more effective communication between
LLMs and RL agents by evolving the Reward Observation

Space (ROS) through heuristic sampling. By incorporating a
table-based exploration caching mechanism, we alleviate the
Markovian constraint commonly found in LLM dialogues,
enabling a more comprehensive and efficient exploration of
potential reward spaces. Additionally, our structured text-code
reconciliation strategy bridges the cognitive gap between user
intentions and expert-defined success criteria, ensuring that
LLM-generated rewards are both relevant and actionable
across a variety of environments. The proposed method
significantly surpasses existing frameworks in both efficiency
and effectiveness, highlighting its potential for universal RL
reward design. This research represents a notable advancement
in integrating LLMs with RL, paving the way for the
development of autonomous systems that can adapt to diverse
tasks with minimal human input. Future work will aim to
further refine the feedback loop and investigate the application
of this framework in more complex, real-world scenarios.

REFERENCES

[1] Llms don’t understand negation. Available from: https://
hackernoon.com/llms-dont-understand-negation. Ac-
cessed: 2024-08-22.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[3] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar,
Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu, Keerthana
Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i

https://hackernoon.com/llms-dont-understand-negation
https://hackernoon.com/llms-dont-understand-negation


say: Grounding language in robotic affordances. arXiv preprint
arXiv:2204.01691, 2022.

[4] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn
Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot hand.
arXiv preprint arXiv:1910.07113, 2019.

[5] Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement
learning: Challenges, methods and progress. Artificial Intelligence,
297:103500, 2021.

[6] Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong,
Jonathan Tompson, Yevgen Chebotar, Debidatta Dwibedi, and Dorsa
Sadigh. Rt-h: Action hierarchies using language. arXiv preprint
arXiv:2403.01823, 2024.

[7] Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan
Jiang, Zongqing Lu, Stephen McAleer, Hao Dong, Song-Chun Zhu,
and Yaodong Yang. Towards human-level bimanual dexterous manipu-
lation with reinforcement learning. Advances in Neural Information
Processing Systems, 35:5150–5163, 2022.

[8] Peter Dayan and Bernard W Balleine. Reward, motivation, and
reinforcement learning. Neuron, 36(2):285–298, 2002.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. In International
conference on machine learning, pages 1126–1135. PMLR, 2017.

[10] Huy Ha, Pete Florence, and Shuran Song. Scaling up and distilling
down: Language-guided robot skill acquisition. In Conf. Robo. Learn.,
pages 3766–3777. PMLR, 2023.

[11] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davi-
son. Rlbench: The robot learning benchmark & learning environment.
IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[12] Joanne Taery Kim and Sehoon Ha. Observation space matters:
Benchmark and optimization algorithm. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 1527–1534.
IEEE, 2021.

[13] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini,
and Shane Legg. Scalable agent alignment via reward modeling: a
research direction. arXiv preprint arXiv:1811.07871, 2018.

[14] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang,
Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Eureka: Human-level reward design via coding large
language models. arXiv preprint arXiv:2310.12931, 2023.

[15] Yecheng Jason Ma, William Liang, Hung-Ju Wang, Sam Wang,
Yuke Zhu, Linxi Fan, Osbert Bastani, and Dinesh Jayaraman.
Dreureka: Language model guided sim-to-real transfer. arXiv preprint
arXiv:2406.01967, 2024.

[16] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle
Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur
Allshire, Ankur Handa, and Gavriel State. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint
arXiv:2108.10470, 2021.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[18] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance
under reward transformations: Theory and application to reward shaping.
In Icml, volume 99, pages 278–287, 1999.

[19] Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforce-
ment learning. In Icml, volume 1, page 2, 2000.

[20] Scott Niekum, Andrew G Barto, and Lee Spector. Genetic programming
for reward function search. IEEE Transactions on Autonomous Mental
Development, 2(2):83–90, 2010.

[21] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774,
2023.

[22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[23] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[24] Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do
rewards come from. In Proceedings of the annual conference of the
cognitive science society, pages 2601–2606. Cognitive Science Society,
2009.

[25] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[26] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech
Zaremba, and Pieter Abbeel. Domain randomization for transferring
deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems
(IROS), pages 23–30. IEEE, 2017.

[27] Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang,
Katerina Fragkiadaki, Zackory Erickson, David Held, and Chuang
Gan. Robogen: Towards unleashing infinite data for automated robot
learning via generative simulation. arXiv preprint arXiv:2311.01455,
2023.

[28] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and
Douglas C Schmidt. Chatgpt prompt patterns for improving code
quality, refactoring, requirements elicitation, and software design. arXiv
preprint arXiv:2303.07839, 2023.

[29] Zeqi Xiao, Tai Wang, Jingbo Wang, Jinkun Cao, Wenwei Zhang, Bo Dai,
Dahua Lin, and Jiangmiao Pang. Unified human-scene interaction via
prompted chain-of-contacts. arXiv preprint arXiv:2309.07918, 2023.

[30] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and
Jianfeng Gao. Set-of-mark prompting unleashes extraordinary visual
grounding in gpt-4v. arXiv preprint arXiv:2310.11441, 2023.

[31] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol
Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark
and evaluation for multi-task and meta reinforcement learning. In
Conference on robot learning, pages 1094–1100. PMLR, 2020.

[32] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei
Lee, Montserrat Gonzalez Arenas, Hao-Tien Lewis Chiang, Tom Erez,
Leonard Hasenclever, Jan Humplik, et al. Language to rewards for
robotic skill synthesis. In 7th Annual Conference on Robot Learning,
2023.

[33] Yuwei Zeng, Yao Mu, and Lin Shao. Learning reward for robot
skills using large language models via self-alignment. arXiv preprint
arXiv:2405.07162, 2024.

[34] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey,
et al. Maximum entropy inverse reinforcement learning. In Aaai,
volume 8, pages 1433–1438. Chicago, IL, USA, 2008.


	Introduction
	Related work
	Problem Formulation
	Methodology
	User-expert Mission Reconciling
	Observation Space Evaluation
	Implementation details

	Experiment
	Baselines and Tasks
	Evaluation Metrics
	Comparisons
	Ablation Study

	Conclusion
	References

